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MicroRNAs (MiRNAs) are a class of small non-coding RNAs involved in major carcinogenesis pathways. MiRNAs have been shown to exhibit 

potential diagnostic and prognostic properties in all major types of cancer. Next generation sequencing has become the main platform for MiRNA 

profiling. However, bioinformatic analysis of the sequencing data is challenging, as it requires  significant amount of computational resources and 
currently available web based analytical tools lack flexibility and reliability. We developed an in-house sequencing pipeline for miRNA sequencing data 

analysis that integrates read pre-processing, alignment, mature/precursor/novel miRNA detection and quantification. Using well characterized data, we 

demonstrated the pipeline’s superior performances, flexibility, and practical use in research and biomarker discovery.  
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Introduction 

 

MicroRNAs (miRNAs) are widely studied small non-

coding RNAs (~22bp) that regulate gene expression. Due 

to high stability of these molecules in biological samples, 

they have become an attractive target in the biomarker 

research field (Link and Goel 2013; Bartel 2009). Aberrant 

expression of miRNAs has been associated with a number 

of disease states, including cancer and autoimmune 

diseases (Link et al. 2012; Marques-Rocha et al. 2015; 

Kalla et al. 2015). Furthermore, miRNAs have been shown 

to have a diagnostic or prognostic role and even potential 

clinical implications for targeted gene therapy in cancer 

patients (Yamakuchi et al. 2010; Yanaihara et al. 2006). 

MiRNA profiling through next generation sequencing 

(NGS) has become the main platform for biological 

research and biomarker discovery. However, analyzing 

miRNA sequencing data is challenging as it requires a 

significant amount of computational resources and 

bioinformatics expertise (Veneziano, Nigita, and Ferro 

2015). Lack of flexibility and reliability of the currently 

available web based analytical tools is a common issue. 

We aimed to develop an in-house pipeline for miRNA 

NGS data analysis that integrates read pre-processing, 

alignment, mature/precursor/novel miRNA detection and 

quantification. 

 

Methods 

 

Overview. The computational pipeline described in 

this paper represents an integrative toolkit for miRNA 

NGS data analysis. The overview of the methodology used 

in the pipeline is shown in Fig. 1. The bioinformatics 

pipeline starts by pre-processing the raw reads in FASTQ 

format: trimming 3' adapter sequences, quality filtering and 

collapsing identical reads to accelerate the computationally 

exhaustive downstream analysis. After the pre-processing 

step, the pipeline uses local alignment tool blastn to map 

the reads to a custom databases that contain annotated viral 

genome (O’Leary et al. 2016), viral hairpin (Kozomara and 

Griffiths-Jones 2014), tRNA, rRNA, snRNA and sRNA 

(Griffiths-Jones et al. 2003) sequences, which are then 

discarded from further analysis. The filtered reads then 

could be used for novel miRNA prediction or directly for 

known miRNA quantification using local alignment tool 

bowtie. Novel miRNA prediction step of the pipeline uses 

miRDeep2 (Friedländer et al. 2012) module. In this step 

filtered reads are mapped to the human genome (hg19) and 

used for novel miRNA prediction by miRDeep2 core 

algorithm. Predicted miRNAs are then filtered based on 

several criteria (signal to noise ratio; mapping to CDS, 

lncRNA and repeat sequences; GC content) and quantified 

as described previously. This pipeline is adapted to human 

miRNA NGS analysis but it can be used for both plant and 

animal miRNA analysis, including novel miRNA 

prediction, miRNA quantification and differential 

expression analysis. 

 
Fig. 1. Scheme of computational pipeline for miRNA NGS analysis.  

 

Small RNA NGS data sets. In order to evaluate the 

performance of the computational pipeline, two different 

sources of material were used to generate small RNA 

libraries. 15 libraries were derived from paraffin embedded 

histologically normal human stomach tissue from patients 

with gastrointestinal stromal tumors and 24 libraries were 

derived from histologically normal freshly frozen human 

stomach tissue from patients with gastric cancer. All 

libraries were prepared using TruSeq Small RNA Sample 

Preparation Kit (Illumina) according to manufacturer's 

protocol and sequenced on HiSeq2500 (Illumina) next-

generation sequencing platform.  
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Pre-processing sequencing reads. This step includes 

trimming 3' adapter sequences, quality filtering based on 

phred quality score (Q ≥ 20) and collapsing identical reads. 

Depending on the experimental design and used NGS 

platform, 3' adapter sequences may differ. The pre-

processing step is adapted to TruSeq Small RNA protocol 

but it could be adjusted to other protocols. The 3' adapter 

trimming, quality trimming and collapsing is performed 

using the following code in the UNIX shell: 
 

> for sample in `cat sample_list`; do 
>  # Adaptor trimming and quality filtering 

> cutadapt -b TGGAATTCTCGGGTGCCAAGG -m 18 -q 20 --

discard-untrimmed ${sample}.fastq > ${sample}_clipped.fastq 
> # Fastq to fasta conversion  

> fastq_to_fasta -i ${sample}_clipped.fastq -o ${sample}_clipped.fa 

> # Collapsing identical reads 

> collapse_reads_md.pl ${sample}_clipped.fa > 

${sample}_colapsed.fa 

> done  
 

Filtering sequencing reads. This step of the pipeline 

discards mapped sequences to annotated viral genomes, 

viral hairpins, tRNAs, rRNAs, snRNAs and sRNAs. The 

filtering is very important for in silico miRNA prediction 

in order to remove annotated sequences which could be 

false positively predicted as novel miRNAs. Even if novel 

prediction is not performed, it is recommended to filter the 

reads in order to detect possible contamination from other 

organisms. The example of filtering from viral genome 

sequences is shown below: 
 

> # Create indexes of viral hairpins 
> formatdb -i virus_hairpin.fa -pF -oT -n virus_hairpin.db 

> 

> for sample in `cat sample_list`; do 
> # Create indexes of reads 

> formatdb -i ${sample}_colapsed.fa -pF -oT -n  

${sample}_colapsed.db 
> # Map sequences to viral hairpins 

> blastn -query ${sample}_colapsed.fa -db virus_hairpin.db -

word_size=18 -out  ${sample}_viral_hairpin.out 
> # Get sequence IDs that are not found in viral hairpins 

> get_noHits.pl ${sample}_viral_hairpin.out   

${sample}_not_viral_hairpin_id.txt 
> # Retrieve not mapped sequences 

> fasta_cmd.py ${sample}_colapsed.db  

${sample}_not_viral_hairpin_id.txt ${sample}_reads_filtered.fa 
> done 
 

Predicting novel miRNAs. The pipeline uses miRDeep2 

module, developed to identify novel miRNAs from deep 

sequencing data. The algorithm uses a probabilistic-model-

based method for miRNA discovery in animals. However, 

using modified parameters it was successfully applied for 

miRNA discovery in plants (Zhang et al. 2015). In the first 

step filtered sequences are aligned to reference genome by 

mapper module from miRDeep2 software which uses 

bowtie tool with the following options: bowtie –f –n 0 –e 

80 –l 18 –a –m 5 –best –strata. These options allow 0 

mismatches in the seed region of a read mapped to the 

genome (–n 0) and discard sequences which occur more 

than five times in the reference genome (–m 5). In the 

second step the RNAfold algorithm predicts RNA 

secondary structures of the potential precursors from reads 

which aligned to the reference genome. In the last step the 

potential novel miRNA precursors are scored or neglected 

by the miRDeep2 core algorithm (Friedländer et al. 2012). 

The prediction step in the pipeline is performed using the 

following code: 

 
> # Create indexes of human genome 

> bowtie-build -f hg19.fasta hg19 

> 
> for sample in `cat sample_list`; do 

> # Map reads to reference genome 

>  mapper.pl ${sample}_reads_filtered.fa -c -j -p hg19 -t  
${sample}_reads_filtered_vs_genome.arf -o 2 -u -n 

> # Run prediction algorithm 

>  miRDeep2.pl ${sample}_reads_filtered.fa hg19.fasta  
${sample}_reads_collapsed_vs_genome.arf mirbase_mature.fa none 

mirbase_hairpin.fa -t Human 2>report.log 

> done 
 

Quantification of known or/and novel miRNAs. The 

quantification of miRNAs is performed by quantifier 

module from miRDeep2 software. This module maps the 

sequencing reads to the known mature or novel miRNAs 

and their “star” sequences for the reference species against 

the known/novel precursor miRNAs for the reference 

species. The module uses bowtie with these options: 

bowtie –f –v 1 –a –best –strata –norc. The options allow 1 

mismatch in the seed sequence (–v 1) and do not allow to 

map reads to the reverse complement of the precursor 

sequences in the reference (–norc). The quantification of 

known and novel miRNAs is performed using the 

following code in the UNIX shell:  
 

> for sample in `cat sample_list`; do 

> # Quantify known miRNAs 
>  quantifier.pl -p mirbase_hairpin.fa -m mirbase_mature.fa -r  

${sample}_reads_filtered.fa -d 

> # Assign predicted mature and precursor sequences 
> dir=$(dirname ${sample}_reads_filtered.fa)  

> novel_hairpin=$(find $dir/mirna_results_*/ -type f | grep 

"novel_pres.*fa") 
> novel_mature=$(find $dir/mirna_results_*/ -type f | grep 

"novel_mature.*fa") 

> # Quantify novel miRNAs 
>  quantifier.pl -p $novel_hairpin -m $novel_mature -r  

${sample}_reads_filtered.fa -d 

> done 

 

 Data and requirements for the pipeline: 
 

 Operating system: Unix/Linux based. 

 Programming language: Bash and Perl 5. 

 Software: MiRDeep2, Cutadapt, FASTX, 

RNAfold, Bowtie, BioPerl and BLASTn. 

 Databases: MiRBase, Rfam and Refseq. 

 

Results and discussion 

 

Pre-processing sequencing reads. To illustrate the 

performance of the pipeline, two different preservation 

types of histologically normal human stomach tissue were 

used for NGS miRNA analysis. It is known that fresh-

frozen (FF) tissues usually have better RNA quality and 

yield than formalin-fixed, paraffin-embedded (FFPE) 

tissues (Roberts et al. 2009). Therefore, if the performance 

of the pipeline is good, this should be reflected in the 

results of pre-processing step. In total, small RNA NGS of 

24 FF and 15 FFPE tissue samples yielded 198,993,444 

(150,070,958 - FF and 48,922,486) raw sequencing reads. 

The average numbers of raw reads per sample were 

7,898,471 and 3,261,499 in FF and FFPE samples, 
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respectively. Whereas after the pre-processing, the average 

numbers of reads per sample were 6,879,945 and 

2,180,589 in FF and FFPE samples, respectively. The 

average proportion of retained reads after pre-processing 

step was significantly higher (87,1 %; t-test FDR adjusted 

p-value = 0.00001) in FF than in FFPE (62,5 %) samples, 

which is as expected due to the lower quality of FFPE 

samples. The results of pre-processing show that all 

parameters of this step are well adjusted and sensitive 

enough to filter low quality reads from different RNA 

sources. 

Filtering sequencing reads. Another step of the 

pipeline is to identify and discard various annotated 

sequences. This step is optional in the pipeline, however it 

is important for in silico novel miRNA prediction (Wen et 

al. 2012). After applying this step on the pre-processed 

reads, the average of filtered reads was higher in FF 

(2,253,447) than in FFPE (853,043) samples. However, the 

percentage of filtered reads was relatively similar in both 

groups of samples, 66,2 % and 60,1 % in FF and FFPE, 

respectively, showing that distribution of high quality 

reads is similar regardless the preservation type of 

biological material. The bulk of sequencing reads before  

 

Fig. 2. Pre-processed read lengths before and after filtering step. 

 

and after filtering step were of 20-23 nt length which 

corresponds to the length of mature miRNA sequences. 

Interestingly, the majority of filtered reads were 26 - 43 nt 

length which exceeds the length of mature miRNA 

sequences (Fig. 2), showing that filtering step mainly 

discards uninformative sequences from downstream 

analysis. The greater number of these sequences were 

mapped to annotated transcripts from Rfam database, 

while only a small portion of sequences were mapped to 

viral sequences which could be used to identify viral 

infections in patients (Chang et al. 2013). The summary of 

filtered sequences is shown in Table 1. 

Novel miRNA prediction. The miRDeep2 is one of the 

most commonly used algorithm for miRNA prediction 

(Zhang et al. 2015; Wen et al. 2012; Shi et al. 2015). It 

identifies miRNA genes with high accuracy (98.6–99.9%) 

and sensitivity (71–90%) in all clades (Friedländer et al. 

2012). Therefore it was chosen to implement in the 

pipeline. The input for de novo miRNA prediction is the 

sequencing reads after the filtering step. As an output, 

miRDeep2 produces a ranked list of novel candidates 

relying on the intrinsic features in terms of signal to noise 

ratio. In this step of analysis, 180 and 259 unique novel 

candidates above the signal to noise threshold value were 

identified in FF and FFPE samples, respectively. The 

average number of novel candidates per sample was 25 

(ranged from 6 to 99) and 15 (ranged from 2 to 40) in FF 

and FFPE samples, respectively. Candidate novel miRNAs 

represented 153,773 read counts in total (range: 2 - 

43,160), where 136,265 counts were detected in FF and 

17,508 counts in FFPE samples. The predicted miRNA 

sequences were located in all 23 human chromosomes.  

Quantification of known miRNAs. To demonstrate the 

the utility of the pipeline, known miRNAs from miRBase 

(version 21) were quantified in the sequencing reads 

retrieved directly after the filtering step. Overall, 1765 

(1692 in FR; 1288 in FFPE) known miRNAs were detected 

and were represented by 103,662,405 (90,690,051 in FF; 

12,972,354 in FFPE) counts. Interestingly, 73 known 

miRNAs were detected in FFPE were not detected in FR 

samples which had a higher yield of sequencing reads. 

However, the abundance of these miRNAs was very low 

(ranged from 0 to 4 counts per sample) and was not 

significant for downstream analysis.  

In order to evaluate the overall performance of the 

pipeline, miRNA expression profiles of FF and FFPE 

samples from histologically normal stomach tissues were 

compared. Pearson's correlation analysis of miRNA mean 

expression values showed high similarity (r = 0.91) 

between FF and FFPE preserved tissues, meaning that the 

pipeline is sensitive enough to reconstruct similar 

expression profiles of the same origin of tissues even 

though the sampling and quality of RNA were different.  

 
Table 1. The summary of mapped sequences after filtering step 

  

Tissue preservation type 

The percentage of filtered sequences mapped to reference databases, %  

Viral hairpins Viral genomes Rfam sequences 

Fresh Frozen (FF) 0.006 0.31 99.68 

Formalin-Fixed, 

Paraffin-Embedded (FFPE) 
0.003 0.63 99.32 
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Conclusions 

 

In this report, we introduced a simple toolkit for 

miRNA NGS data analysis. The pipeline enables flexible 

and sensitive pre-processing, novel miRNA prediction and 

known/novel miRNA quantification from NGS data. 

Additionally, we demonstrated the pipeline’s superior 

performances to reconstruct miRNA profiles from low 

quality RNA samples. 
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Automatizuotos algoritmų sekos sukūrimas mikroRNR sekoskaitos duomenų analizei 
 

Santrauka 

 
MikroRNR yra trumpos baltymo nekoduojančios RNR molekulės, dalyvaujančios su onkogeneze susijusių signalinių kelių reguliacijoje. Pasaulyje 

atlikti tyrimai parodė, kad mikroRNR raiškos profilis būna pakitęs įvairių vėžinių susirgimų atveju ir jos gali būti vertingais įrankiais šių susirgimų 

diagnostikai ir prognozei. Vienas patikimiausiu mikroRNR raiškos profilio tyrimo metodų yra naujos kartos sekoskaita. Tačiau bioinformatinė 

sekoskaitos duomenų analizė, reikalaujanti didelių kompiuterinių resursų ir patikimų bei lanksčių analitinių įrankių, vis dar išlieka iššūkiu. Šiame darbe 
pristatoma automatizuota algoritmų seka mikroRNR sekoskaitos duomenų analizei, kurioje yra integruotos pirminių nuskaitymų apdorojimo, seku 

palyginimo, subrendusių ir naujų mikroRNR bei jų prekursorių aptikimo ir kiekybinio įvertinimo funkcijos. Naudodami gerai charakterizuotus duomenis, 

pademonstravome sklandų sukurtos automatizuotos algoritmų sekos veikimą, lankstumą ir praktinį pritaikymą biožymenų paieškos tyrimams 

MikroRNR, Naujos kartos sekoskaita, bioinformatika 
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