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� The research focuses on agricultural sectors of the eighteen European countries.
� The main drivers of energy-related CO2 emission are quantified by means of IDA.
� The slack-based DEA model is applied to gauge the environmental efficiency.
� Shadow prices of carbon emission are analysed.
� Energy efficiency remains the primary means for increasing environmental efficiency.
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Climate change mitigation is a key issue in formulating global environmental policies. Energy production
and consumption are the main sources of greenhouse gas (GHG) emissions in Europe. Energy consump-
tion and energy-related GHG emissions from agriculture are an important concern for policymakers, as
the agricultural activities should meet food security goals along with proper economic, environmental,
and social impacts. Carbon dioxide (CO2) emission is the most significant among energy-related GHG
emissions. This paper analyses the main drivers behind energy-related CO2 emission across agricultural
sectors of European countries. The analysis is based on aggregate data from the World Input-Output
Database. The research explores two main directions. Firstly, Index Decomposition Analysis (IDA), facil-
itated by the Shapley index, is used to identify the main drivers of CO2 emission. Secondly, the Slack-
based Model (SBM) is applied to gauge the environmental efficiency of European agricultural sectors.
By applying frontier techniques, we also derive the measures of environmental efficiency and shadow
prices, thereby contributing to a discussion on CO2 emission mitigation in agriculture. Therefore, the
paper devises an integrated approach towards analysis of CO2 emission based upon advanced decompo-
sition and efficiency analysis models. The research covers eighteen European countries and the applied
methodology decomposes contributions to CO2 emission across of regions and factors. Results of IDA sug-
gest that decreasing energy intensity is the main factor behind declines in CO2 emission. According to the
SBM, the lowest carbon shadow prices are observed in France, Finland, Sweden, Denmark, the
Netherlands, Poland, and Belgium. These countries thus have the highest potential for reduction in CO2

emission. The results imply that measures to increase energy efficiency are a more effective means to
reduce CO2 emissions than are changes in the fuel-mix.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction of global and regional economies1. One of the key questions in this
The increasing worldwide concerns regarding climate change
mitigation call for deeper analysis into environmental performance
area is CO2 (carbon dioxide) emission. Indeed, CO2 is the main con-
tributor to overall greenhouse gas (GHG) emission. A proper under-
standing of the main drivers behind the changes in CO2 emission is
various
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2 The techniques this study focuses on can be applied for sub-national, national, or
international analysis. However, a wider range of techniques is available for farm-
level analysis [12].
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necessary to deliver sound policy implications and ensure sustain-
able development of various economic systems [9–11]. Energy pro-
duction and consumption are the main sources of GHG emissions
in Europe. Energy consumption by and GHG emissions from agricul-
ture are an important concern for policymakers, because agricultural
activities – the cultivation of crops and livestock husbandry –
themselves significantly contribute to GHG emissions. Therefore,
there is considerable pressure on this sector to identify the most effi-
cient climate change mitigation policies and measures. This has also
been acknowledged by both policy-makers and researchers in the
European Union [12]. The present paper, hence, attempts to analyse
the CO2 emission performance of agricultural sectors of the EU Mem-
ber States.

Essentially, there are two principal ways to reduce GHG emis-
sions arising from energy consumption in agriculture: increase
energy efficiency and increase the use of renewable energy
sources. Accordingly, there is a need for integrated analysis of eco-
nomic activities, environmental pressures, and the dynamics
thereof. Moreover, another important issue is the potential for
reducing environmental pressures, including CO2 emissions. The
literature has suggested a number of quantitative techniques for
analysis of the aforementioned problems and environmental pres-
sures in general [13–18]. Structural Decomposition Analysis (SDA)
and Index Decomposition Analysis (IDA) are widely applied for
analysis of changes in CO2 emissions with respect to multiple fac-
tors. As regards the gaps in the CO2 emission performance, frontier
techniques appear as a primal tool for efficiency analysis. Among
the frontier techniques, the non-parametric Data Envelopment
Analysis (DEA) and the parametric Stochastic Frontier Analysis
(SFA) constitute the main strands of methods.

Analysis of the earlier literature suggests that there have been
analyses on energy and/or carbon efficiency involving multiple
countries. Only a handful of them have addressed these issues
within a specific sector of economy. Furthermore, IDA and effi-
ciency analysis have not been applied in an integrated manner,
even though the directions for reductions in carbon emission can
be quantified by means of efficiency analysis (e.g., DEA). Method-
ologically, this paper addresses the latter gap and demonstrates
the possibilities for interaction among the two approaches. Indeed,
the agricultural sector receives substantial public financial support
in the European Union (EU) under the Common Agricultural Policy.
Furthermore, other structural measures can be taken to improve
energy sustainability in rural areas as well. Accordingly, there is
a need to identify the key factors contributing to changes in CO2

emission as well as targets for its reduction. Noteworthy, regional
disparities are also important in order to deliver appropriate policy
guidelines. However, the recent literature on the EU agriculture has
only been focused on application of IDA in this context [19]. From
empirical viewpoint, this paper seeks to analyse the main drivers
along with performance gaps for energy-related CO2 emission
across agricultural sectors of European countries thereby filling
yet another gap in the literature. By applying frontier techniques,
we also derive measures of environmental efficiency and shadow
prices. This enables us to identify performance gaps and possible
ways for furthering reductions in CO2 emission. Therefore, this
paper contributes to the empirical discussion regarding
management of energy-related CO2 emission in the EU agricultural
sectors.

The research framework comprises the two main techniques.
The Shapley/Sun index is applied for IDA. This allows us to quantify
the impacts of different factors on the overall change in CO2 emis-
sion. Subsequently, DEA is applied to identify gaps in emission per-
formance. By applying the Slack-based Model (SBM), as proposed
by Cooper et al. [20], we obtain both the measures of efficiency
and shadow prices of CO2 emission. The research relies on the
World Input-Output Database [7].
The paper is organized as follows: Section 2 presents a survey
on analysis of CO2 emission by means of decomposition analysis
and frontier techniques. Section 3 presents the techniques
employed for the analysis as well as the dataset. Section 4 dis-
cusses the results obtained, namely the factors of change in CO2

emission, environmental efficiency, and shadow prices. Finally,
Section 5 presents our conclusions and offers directions for further
research.
2. Literature survey

Policy making for mitigation of CO2 emission (and many other
environmental pressures, too) requires information on the two
key issues: (1) the driving factors of the emission, and (2) the
extent to which the emission could be reduced. In this section, a
survey of the literature on the aforementioned issues is presented2.

Changes in CO2 emission can be factorized by means of decom-
position analysis. In this approach, the main idea is to break down
the overall change in emission by attributing it to the underlying
factors (e.g., the level of economic activity, carbon factor, energy
intensity, structure of the economy). Such a setting for decomposi-
tion of CO2 emissions allows one to track the progress achieved by
implementing specific climate change mitigation policies and mea-
sures (e.g., energy efficiency improvements, increased usage of
renewables in final energy consumption) aimed at reducing the
carbon intensity of energy consumption.

In general, two strands of decomposition analysis are available,
namely SDA and IDA; see Hoekstra and van der Bergh [21] for a
detailed discussion. These approaches differ in that SDA relies on
input-output analysis [22–24], whereas IDA requires no informa-
tion about inter-sectoral linkages. Ang [25], Ang [26] and Xu and
Ang [13] presented the main methodological issues for IDA. Indeed,
following Ang et al. [27], one can identify two groups of IDA meth-
ods, namely techniques linked to the Divisia index and techniques
linked to the Laspeyres index. Choi and Ang [28] proposed decom-
posing the changes in energy intensity into real intensity change
and structural effects. Ang et al. [29] presented an IDA for a
multi-country setting.

IDA has been extensively used for CO2 emission analysis at var-
ious levels of aggregation [30–34]. Brizga et al. [35] employed IDA
to decompose CO2 emissions in countries of the former Soviet
Union, whereas Brizga et al. [36] applied SDA for analysis of GHG
emissions in the same localities. Voigt et al. [37] addressed a
related topic – energy intensity – in multiple countries by utilising
the logarithmic mean Divisia index (LMDI). Kaivo-oja et al. [38]
applied IDA to identify trends in CO2 emission in the main world
economies. González et al. [39], González et al. [40] analysed CO2

emissions across the European Union Member States by means of
IDA. Ang and Su [41] applied IDA to analyse CO2 emission resulting
from electricity production worldwide. Kang et al. [42], Yu et al.
[43], and Zhang et al. [44] applied different IDA techniques to anal-
yse CO2 emission across Chinese provinces. Shao et al. [45] looked
into GHG emission from primary aluminium production by apply-
ing generalized Divisia index approach [46]. Robaina Alves and
Moutinho [47] analysed CO2 emission across economic sectors in
Portugal by means of the Shapley index. Robaina-Alves et al. [48]
analysed CO2 emission in the Portuguese tourism sector by using
IDA. Lin and Lei [49] proposed guidelines for reductions in CO2

emission from Chinese food industry on the basis of IDA. Fan
et al. [50] investigated CO2 emission in Shanghai by applying
IDA. Similarly, Kang et al. [51] and Zhang et al. [52] addressed
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the same topic with IDA in Tianjin and Beijing, respectively. IDA
has also been applied to CO2 emissions from the agricultural sec-
tor: Robaina-Alves and Moutinho [19] focused on European Union
countries, whereas Li et al. [53] analysed Chinese agriculture.
Therefore, the IDA can be specific with the following features: (i)
it can be international, national, or sub-national in scope; (ii) it
can cover a single sector of the economy or the whole economy;
(iii) it can apply different techniques.

Besides identifying the key factors behind CO2 emission, it is
also important to try to foresee possible means for their reduction.
Environmental efficiency measures [54,55] are useful tools in this
regard. Indeed, these measures enable identification of perfor-
mance gaps (or room for improvement) and derivation of shadow
prices of non-marketable outputs (e.g., CO2 emission). Murty et al.
[56] proposed the by-production approach for measurement of
environmental performance. Efficiency measures can be applied
to calculate changes in total factor productivity [57]. Shadow
prices can be used when constructing marginal abatement curves
[58]. Various techniques and measures can be employed for sha-
dow price analysis [14,59]. Furthermore, efficiency models can be
used for emission allocation [60,61].

In regards to estimation techniques, both parametric and non-
parametric approaches can be used. The parametric approach
involves specification of the functional form of the distance func-
tion describing the underlying technology. Parametric techniques
can be applied in a deterministic setting by means of linear pro-
gramming [62–65]. Similarly, econometric techniques allow esti-
mation of the environmental frontier by accounting for random
noise [66–68]. In contrast, the non-parametric approach does not
require assumptions regarding the functional form of the represen-
tation of the underlying technology3. In the latter case, Data Envel-
opment Analysis (DEA) is employed to estimate the production
frontier as well as the distance functions [56,69,70]. Stochastic errors
can be included in the non-parametric analysis by means of stochas-
tic DEA [71]. Similarly to the case of decomposition analysis, effi-
ciency analysis can also focus on the whole economy [70,72] or
particular economic activities [73,74].

Wei et al. [75] pointed out that the well-established approaches
relying on directional distance functions still feature certain short-
comings. Specifically, the setting of directional distance function
analysis requires imposition of a directional vector. Therefore, the
analysis focuses on a particular direction. Furthermore, the conven-
tional measures do not account for slacks. In the present paper, we
therefore apply a non-oriented, non-radial and non-parametric mea-
sure of environmental efficiency, i.e., SBM, as proposed by Cooper
et al. [20]. Even though SBM has been applied for analysis of environ-
mental performance [75], here we combine it with IDA to produce a
more integrated perspective for policy making.

3. Methods

This section provides an overview of the main techniques we
employed in the research as well as the data we used. In particular,
we employed the Shapley/Sun index for IDA, and the slack-based
DEA model to measure environmental efficiency and shadow
prices of CO2 emission in European agriculture. Finally, we discuss
the dataset based on the World Input-Output Database.

3.1. Shapley/Sun index

The Shapley/Sun index belongs to the group of indices linked to
the Laspeyres index. The Shapley/Sun index does not suffer from
3 The interested reader is referred to a special issue of Mathematical and Computer
Modelling, Volume 58 (2013), entitled The Measurement of Undesirable Outputs: Models
Development and Empirical Analyses.
path dependency, i.e., the results are independent on the exact
order the factors come into analysis. Alongside the latter property,
the index also features other desirable properties of perfect decom-
position, time reversal etc. Sun [76] and Albrecht et al. [77] were
the first to propose and employ the Shapley value as a tool for
IDA. Subsequently, Ang et al. [78] argued that both of the afore-
mentioned studies had actually employed the same technique,
namely the Shapley/Sun index. The Shapley/Sun index has since
been applied in various studies on CO2 emission [43,44,79].

Assume that a certain variable of interest, V , is factorized in
terms of the three components, x1, x2, x3. Let the two time periods
be denoted by 0 and T. Then, the following relationship holds [78]:

DV ¼ VT � V0 ¼ xT1x
T
2x

T
3 � x01x

0
2x

0
3 ¼ DVx1 þ DVx2 þ DVx3 ; ð1Þ

where DV is the absolute change in V , and DVxi are the effects asso-
ciated with factors xi, i ¼ 1;2;3.

The Shapley value [80] is then used to estimate the effects of
factors. In a three-factor model, we have:
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In order to factorize the CO2 emission, the following terms are
considered: carbon emission factor (t CO2 eq per joule), energy
intensity (joule per Purchasing Power Standard – PPS) and Gross
Value Added (GVA) in PPS. Therefore, the three variables are taken
into analysis: (i) CO2 emission in tonnes, (ii) emission-relevant
energy consumption in joules, (iii) GVA in PPS (base year 1995).
The data come from the WIOD database.

The following three-factor model is therefore established4:

Ct ¼ Ct

Et

Et

GVAt
GVAt ¼ FtItQt; ð4Þ

where Ct is carbon emission, Ft indicates a carbon factor, It is an
energy intensity factor, and Qt is an economic growth factor during
period t. The Shapley/Sun technique is then employed to quantify
the impacts of changes in the aforementioned factors:

DCt ¼ DFt þ DIt þ DQt; ð5Þ
The effects of the three factors given in Eq. (5) are then estimated by
applying Eq. (2).

The analysis is carried out in a chain-linked manner, i.e., two-
year periods are considered for each country. We then aggregate
the results across years or countries if needed.

3.2. Slack-based measure of efficiency

Initially, neoclassical production technology did not include
undesirable outputs as these cannot be priced [75]. Färe et al.
[82] presented a weak-disposability technology to model the pro-
ductive technology with externalities. Kuosmanen and Matin [83]
and Leleu [84] presented the relevant models for pricing of unde-
sirable outputs in a non-parametric framework.
In this paper, we limit the IDA model to the three factors. However, one can
nsider such additional factors as the share of fossil fuels, see Robaina Alves and
outinho [79]. Furthermore, multi-country comparisons can be facilitated by
xtending the decomposition model [29]. In cases of multiple economic activities,
ne can also account for structural effects [81].
co
M
e
o
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The present paper applies SBM to measure environmental effi-
ciency and derive shadow prices of undesirable outputs. The model
was proposed by Cooper et al. [20] and rests on the following tech-
nology set:

T ¼ ðx; y;uÞjx P
XK
k¼1

kkxk; y 6
XK
k¼1

kkyk; u P
XK
k¼1

kkuk;

(

kk P 0; k ¼ 1;2; . . . ;K

)
; ð6Þ

where x ¼ ðx1; x2; . . . ; xIÞ 2 RI
þ is a vector of inputs,

y ¼ ðy1; y2; . . . ; yJÞ 2 RJ
þ is a vector of desirable outputs,

u ¼ ðu1;u2; . . . ; uLÞ 2 RL
þ is a vector of undesirable outputs, kk is an

intensity variable, and k ¼ 1;2; . . . ;K is the index of decision making
units (countries). Note that Eq. (6) defines a constant-returns-to-
scale technology.

The following SBM accounts for both desirable and undesirable
outputs and measures the efficiency of a certain decision making
unit (country) in terms of slacks in inputs and outputs:

qt ¼ min
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i
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j
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y
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u
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ð7Þ

where t ¼ 1;2; . . . ;K and 0 < qt 6 1 with qt ¼ 1 indicating full effi-
ciency. Eq. (7) presents the underlying idea of the SBM: the t-th
observation, as represented by the input-output vector ðxti ; yti ;ut

i Þ,
is projected onto the production frontier at the point
ðxti � sx�i ; y

t
j þ st�j ;u

t
l � st�l Þ, where sx�i , s

y�
j , and su�l are the optimal val-

ues of s xi , s
y
j , and sul , respectively. The objective function is nor-

malised so that the efficiency scores can be compared across the
observations. However, Eq. (7) defines a non-linear model. It can
be linearized as follows:
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ð8Þ
Indeed, the efficiency scores rendered by Eqs. (7) and (8) are the
same: qt ¼ st .

The shadow prices of undesirable outputs can be derived by
employing the multiplier model, which is dual to Eq. (8):
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where p x, py, and pu are the virtual prices of inputs, outputs, and
undesirable outputs, respectively. The constraints in Eq. (9) ensure
that the virtual profit is maximised for the t-th observation subject
to the condition that no positive profits are observed for all the
observations. This is done by manipulating virtual prices of inputs
and outputs. In the optimal case, the virtual profit equals zero
and, thus, et ¼ 1.

Following Lee et al. [69] and Wei et al. [75], the virtual prices
yielded by Eq. (9) can be employed to derive the shadow price of
an undesirable output:

pl ¼ pjpu
l =p

y
j ; ð10Þ

where pj is the market price of the j-th output. In our case, we use
GVA as the ‘‘numeraire” output. Accordingly, the market price of the
latter output is equal to unity, i.e., the absolute and relative shadow
prices of an undesirable output are equal. The shadow price is a
marginal abatement cost [58,62,75] and shows the trade-off
between a desirable output and an undesirable output. The SBM
was implemented in the General Algebraic Modeling System
(GAMS) environment.

3.3. Data sources

The research applies a dataset retrieved from the World Input-
Output Database [7]. The research period spans the years 1995–
2009. Specifically, the research focuses on the data series for the
Agriculture, Hunting, Forestry and Fishing sector (NACE 1.1 sectors
A-B). To ensure a meaningful international comparison, the GVA
and real fixed capital stock are deflated by the respective price
indices available in the World Input-Output Database (base year
1995), thereby constructing the implicit quantity indices. Further-
more, purchasing power parities of 1995 based on the EU-28 Gross
Domestic Product are used. Therefore, the monetary terms used in
this study are expressed in purchasing power standards (PPS) of
1995, which are devoid of price and exchange rate differences that
would otherwise have existed among the analysed states. To model
the production process, we also include total hours worked by
employees, emission relevant energy use (in terajoules), and CO2

emissions (in kilotonnes). The latter variable is treated as an unde-
sirable output. GVA is a desirable output. The remaining variables
are input ones.

We do not cover all the European Union Member States as some
countries have rather different output structures. Therefore, we
look at a subset of European countries, thus supplementing and
extending research such as that by Robaina-Alves and Moutinho
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[19]. The following countries are covered: Austria, Belgium, Bulgar-
ia, Czech Republic, Denmark, Estonia, Finland, France, Germany
Hungary, Latvia, Lithuania, the Netherlands, Poland, Romania, Slo-
vakia, Slovenia, and Sweden. These countries face similar climatic
conditions in general and, therefore, may follow similar agricul-
tural practices. Furthermore, agricultural producers operating in
these countries are able to generate similar levels of value added
per land area unit due to similar output mix. As a result, even
though such countries as Romania and Bulgaria might not face
exactly the same climatic conditions, it is meaningful to include
them in the same sample due to their specialisation.
4. Results and discussion

The analysis focuses on agricultural sectors of the 18 EU Mem-
ber States. The analysed countries are rather similar in their farm-
ing conditions and/or output structure. The present section
comprises the two parts dedicated to the changes in CO2 emission
(i.e., application of IDA) and efficiency analysis (i.e., application of
DEA).

4.1. The trends in and decomposition of carbon emission from
agriculture

First of all, we look at the dynamics of absolute and relative
indicators related to CO2 emission. Then, an IDA is performed by
means of the Shapley/Sun index. Note that this sub-section pre-
sents the trends in different variables for both the whole sample
and individual states.

4.1.1. The dynamics in absolute indicators
As the dynamics in CO2 emission is explained in terms of eco-

nomic activity and energy use, the three absolute indicators can
be analysed in the first stage: GVA captures the changes in overall
economic activity, the energy use indicator quantifies the energy
input, and the carbon emission indicator represents the environ-
mental pressure arising from the processes described by the for-
mer two indicators.

Fig. 1 below presents the changes in the absolute indicators for
the whole sample. A general observation is that absolute decou-
pling has occurred between the economic activity and energy
use/CO2 emission during the research period. Furthermore, the
change in economic performance was rather meagre during
1995–2003. The subsequent period of 2004–2009 experienced an
increase in GVA but with certain short-term declines mainly due
to unfavourable climatic conditions (prolonged cold periods,
droughts or flooding; cf. [85]. A serious increase in energy con-
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Fig. 1. Carbon emission and related indicators for the group of selected EU
countries, 1995–2009. Notes: GVA stands for Gross Value Added. The data cover the
18 countries as described in Section 3.3.
sumption during 1996 can be attributed to a prolonged winter per-
iod (as indicated by an increase in the number of heating degree
days), which rendered a sharp upswing in energy consumption in
the Netherlands–a country highly engaged in greenhouse farming.
However, no decoupling has been achieved between energy use
and CO2 emission as they stood at 73% and 80% of their initial
levels, respectively, at the end of the research period.

Energy use and CO2 emission followed a negative trend for the
entire research period (with a minor exception for energy use in
1996). Obviously, the reduction in CO2 emission was lower than
that in energy use. Specifically, energy use decreased by some
26%, whereas CO2 emission fell by slightly less than 20%. Therefore,
multiple factors have affected the developments in the volume of
CO2 emission in different directions.

Looking at particular countries, one can note that the highest
variance in agricultural GVA (as measured in PPS) was observed
for Slovakia, Hungary, Bulgaria, Estonia, Latvia, and Sweden
(Table 1). Slovakia showed the highest growth rate, 103%. Lower
yet still vibrant growth rates of over 60% were observed for Estonia
and Hungary. Sweden experienced a growth rate of 34%, whereas
Bulgaria’s was 3% during the period 1995–2009. A declining GVA
was observed for Austria (�7%), Czech Republic (�7%), Romania
(�21%), and Slovenia (�1%). Therefore, the general trend prevailing
among the analysed EU countries was that of increasing activity of
the agricultural sectors.

Most of the analysed countries also showed a reduction in
energy use. However, Estonia, Finland, and Slovenia featured an
opposite trend, with increases in energy use of 1–12%. As regards
to the other countries, these can be grouped into high- and low-
decrease nations. High-decrease countries featured growth rates
of less than �30%. The latter group comprises Bulgaria, Czech
Republic, Germany, Hungary, Lithuania, the Netherlands, Romania,
and Slovakia. Low-decrease countries underwent a decrease of
more than �30%. These countries are Austria, Belgium, Denmark,
France, Latvia, Poland, and Sweden. Indeed, Slovakia and Czech
Republic saw the steepest reductions, �53% and �54%,
respectively.

Divergence from the prevailing trend in CO2 emission change
was observed in Bulgaria, Estonia, Slovakia, and Sweden. For larger
emitters, namely Bulgaria and Sweden, the rates of growth in CO2

emission were 15% and 22%, respectively. Smaller emitters, namely
Estonia and Slovakia, saw increases of 56% and 62%, respectively.
The steepest reduction in CO2 emission was observed for Romanian
agriculture (�77%), whereas Germany, Hungary, and Lithuania fea-
tured rates of decrease of 38–39%. Therefore, further analysis is
needed to reveal the underlying factors behind differences in CO2

emission across the investigated European countries.

4.1.2. The dynamics in relative indicators
The two relative indicators, namely energy intensity and carbon

factor, can further shed light on the observed changes in CO2 emis-
sion (Fig. 2). The results indicate that energy saving technologies
have contributed to a reduction in energy intensity, yet changes
in fuel-mix have driven up CO2 emission. The first period of reduc-
tion in energy intensity spans over years 1995–2001. Given the
output level remained virtually constant throughout the latter per-
iod, the reduction in energy intensity was solely due to savings in
energy consumption. A closer look at the data5 for 1995–2001 sug-
gests that the major savings in energy consumption (and, hence,
energy intensity) were achieved in Germany, Czech Republic, Poland,
and Romania—the countries that had experienced demise of the
planned economy and, in certain cases, de-collectivisation. Transi-
tion to the market economy rendered technological (modern
5 See the electronic supplementary material for the initial data set.



Table 1
Rates of growth (%) in key variables for agricultural sectors of selected EU countries, 1995–2009.

Gross Value Added Emission relevant energy
use

Carbon emissions Emission intensity Carbon factor

Mean
(million
1995 PPS)

Growth
(%)

CV Mean
(TJ)

Growth
(%)

CV Mean
(kt)

Growth
(%)

CV Mean
(million J/
PPS)

Growth
(%)

CV Mean (g/
million J)

Growth
(%)

CV

Austria 3463 �6.7 0.05 25,766 �0.3 0.08 1033 �19.0 0.07 7.3 6.9 0.09 40.2 �18.8 0.08
Belgium 2723 1.7 0.04 38,325 �25.1 0.19 2825 �20.4 0.07 13.7 �26.4 0.18 76.2 6.3 0.15
Bulgaria 6675 2.8 0.13 18,813 �35.8 0.16 1018 15.4 0.08 2.7 �37.6 0.17 58.2 79.8 0.19
Czech

Republic
4893 �6.7 0.09 30,288 �53.5 0.24 2804 �22.7 0.13 6.1 �50.2 0.24 95.1 66.4 0.15

Germany 19,648 14.4 0.08 169,601 �35.7 0.23 8750 �37.9 0.19 8.4 �43.8 0.27 52.0 �3.4 0.11
Denmark 3240 29.1 0.08 50,286 �3.6 0.04 2523 �15.7 0.06 15.3 �25.3 0.10 49.7 �12.6 0.05
Estonia 553 60.0 0.15 4381 5.1 0.16 185 56.4 0.32 7.7 �34.3 0.18 42.3 48.8 0.20
Finland 3167 18.1 0.09 37,941 12.3 0.06 2104 �16.8 0.07 12.0 �5.0 0.10 54.7 �25.9 0.11
France 32,889 16.5 0.05 190,700 �3.5 0.03 13,989 �7.6 0.03 5.8 �17.1 0.07 73.3 �4.3 0.02
Hungary 6675 66.6 0.23 30,398 �30.8 0.13 1498 �39.0 0.17 4.6 �58.5 0.33 48.7 �11.9 0.07
Lithuania 2102 27.1 0.08 8239 �36.1 0.16 348 �37.6 0.24 3.8 �49.7 0.18 41.9 �2.3 0.11
Latvia 710 35.1 0.13 7756 �26.1 0.11 465 �17.2 0.10 10.6 �45.3 0.18 60.4 12.0 0.06
Netherlands 9379 22.9 0.07 241,818 �35.8 0.20 10,268 �6.4 0.08 24.4 �47.7 0.22 45.2 45.7 0.16
Poland 18,445 21.1 0.06 215,392 �26.5 0.13 15,101 �24.2 0.12 11.4 �39.3 0.19 70.6 3.2 0.03
Romania 17,377 �20.7 0.10 34,955 �39.5 0.30 652 �76.8 0.67 2.0 �23.7 0.26 16.1 �61.7 0.36
Slovakia 2646 102.9 0.27 9686 �52.8 0.30 102 62.0 0.31 3.7 �76.7 0.52 12.3 243.2 0.40
Slovenia 857 �0.7 0.05 5043 0.5 0.26 233 �15.0 0.04 5.8 1.1 0.25 48.7 �15.4 0.18
Sweden 4706 33.5 0.12 35,450 �13.1 0.08 2439 21.5 0.09 7.4 �34.9 0.18 70.5 39.8 0.12

Notes: The data are based on the World Input-Output Database [7]. CV stands for coefficient of variation.
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machinery featuring higher energy efficiency, improved agricultural
practices), economic (market integration and optimisation of agri-
cultural activities), and institutional (family farming) changes,
which, in turn, resulted in the reduced energy consumption and
intensity. Noteworthy, similar trends prevailed in other sectors of
transitional economies [86]. Subsequent decline of energy intensity
can be mainly attributed to technological progress (improved
machinery). Indeed, modern farming practices were encouraged by
the EU funds (e.g., European Agricultural Fund for Rural Develop-
ment). Especially, investment support has been available for the
new EU Member States which acceded in 2004. Besides investments
into fixed assets, biogas and biomass production was also encour-
aged under different measures. Finally, increasing human capital
and labour productivity, changes in cropping patterns, farm consol-
idation all contributed to reduce in energy intensity [12]. In any
event, the increase in CO2 emission due to an increasing carbon fac-
tor is not that significant (relative to energy intensity) given the
slope of the carbon factor trend is much lower than that of energy
intensity. Indeed, this might indicate that economic costs related
to changes in fuel-mix are higher than the costs of improving the
sector’s energy efficiency (as there are virtually no tangible gains
from reduction in CO2 emission). As regards the EU Member States
covered by this research, the increase in carbon factor was mainly
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Fig. 2. Energy intensity and carbon factor for the group of selected EU countries,
1995–2009. Notes: TJ stands for terajoules, PPS – Purchasing Power Standards, kt –
kilotonne. The data cover the 18 countries as described in Section 3.3.
induced by substitution of gasoil and other carbon-intensive fuels
for natural gas. This was influenced by both fluctuations in fuel
prices and support policies.

Only Austria and Slovenia exhibited increases in energy inten-
sity, of 7% and 1%, respectively (Table 1). At the other end of spec-
trum, the most significant decreases were observed in Hungary
and Slovakia, namely �68% and �77%, respectively. The highest
mean energy intensity was observed in the Netherlands (24 kJ/
PPS). Denmark featured the second highest mean energy intensity
of 15 kJ/PPS. The countries with higher values of mean energy
intensity differed in terms of rates of decrease in the latter indica-
tor. Belgium, Denmark, and Finland showed mean energy intensi-
ties of 12–15 kJ/PPS coupled with a decrease of some 5–25%. In
contrast, the Netherlands and Poland (mean energy intensities of
24 kJ/PPS and 12 kJ/PPS, respectively) experienced rates of
decrease of 48% and 39%, respectively. All in all, the analysed coun-
tries seem to be successful in reducing energy intensity in the agri-
culture sector during 1995–2009.

The changes in carbon factor are more diverse across the anal-
ysed countries as opposed to changes in energy intensity. Specifi-
cally, nine countries showed an increase in carbon factors. The
highest increase in carbon factor was observed for Slovakia (more
than 240%). The growth rates ranged between 40% and 80% for Bul-
garia, Czech Republic, Estonia, the Netherlands, and Sweden. Lat-
via, Belgium, and Poland experienced much lower rates of
growth, namely 3–12%. The highest mean carbon factor was
observed in Czech Republic (95 t CO2/GJ). Furthermore, Belgium,
France, Poland, and Sweden exhibited significant increases in car-
bon factor, with growth rates exceeding 70%.

Coefficients of variation (CV) for the two relative indicators
(Fig. 3) suggest that no serious improvements in convergence were
achieved, as the values of the CVs remained rather stable through-
out the research period. Obviously, variation in carbon factors is
much higher than in energy intensities. Therefore, relatively higher
variation in carbon factors implies the analysed countries utilise
rather different fuel-mixes. This implies that further research on
mitigating CO2 emission via changes in fuel-mix is rather impor-
tant. As regards the carbon factor, one can notice a downward
trend in the CV for the period 2002 and onwards. However, the lat-
ter plunge did not offset a previous increase and, therefore, the
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Fig. 3. Coefficients of variation for energy intensity and carbon factor, 1995–2009.
Notes: TJ stands for terajoules, PPS – Purchasing Power Standards, kt – kilotonnes.
The data cover the 18 countries as described in Section 3.3.
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value of CV for carbon factor remained at the same level for the
two endpoints of the time series for 1995–2009. CV for energy
intensity fluctuated during 1995–2000 and subsequently increased
as compared to year 1995. Afterwards, it remained stable, indicat-
ing no convergence in energy intensity in agriculture among the
European countries. All in all, the spread of energy-efficient tech-
nologies and promotion of renewables remain the key means for
reducing the (persistent) gaps in energy intensities and carbon fac-
tors. In the following sub-section we apply IDA to quantify the con-
tributions of different factors to the change in CO2 emission.
4.1.3. The results of IDA
IDA allows quantification of the contributions of different fac-

tors to the overall change in CO2 emission. The results in absolute
terms are presented in Fig. 4. The analysis was carried out in a
chain-linked manner and the results were aggregated for the
whole research period.

The absolute contractions in CO2 emission exceeded 1000 kt in
Germany, Poland, Romania, and France. IDA shows (see Fig. 4) that
France and Germany are similar in their decomposition profiles, as
both carbon factor and energy intensity contribute to a decrease in
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Fig. 4. Decomposition of change in CO2 emission across the analysed countries, 1995–20
and activity effects, respectively.
CO2 emission, whereas increased economic activity has the oppo-
site effect. Romania deviates from the latter pattern in that it expe-
rienced a decreasing agricultural output. For Poland, an increasing
carbon factor caused a rise in CO2 emission by 439 kt, yet this
change was offset by improvements in energy efficiency, as sug-
gested by a negative contribution of intensity effect (�7296 kt).

The second group of countries comprises Czech Republic, the
Netherlands, Hungary, Belgium, Denmark, and Finland, where
CO2 emission decreased by 383–757 kt during 1995–2009. Nota-
bly, the Netherlands saw a large reduction in CO2 emission
(6441 kt) due to decreasing energy intensity. However, changes
in fuel-mix (i.e., carbon factor change) and an increasing output
(i.e., activity effect) pushed CO2 emission up by 3610 kt and
2107 kt, respectively. Therefore, the overall change in CO2 emission
was rather meagre there as compared to countries with similar
emission volumes. Czech Republic experienced a similar absolute
reduction to that of the Netherlands due to a decreasing agricul-
tural output and, more importantly, a decreasing energy intensity.
In Belgium, CO2 emission decreased due to an increase in energy
efficiency (as represented by energy intensity effect) by 907 kt,
whereas carbon factor and activity effects caused increases of
212 kt and 67 kt, respectively. In Hungary, Denmark, and Finland,
CO2 emission in those countries was reduced due to decreasing
carbon factors and energy intensity. The effect of energy intensity
was rather low in Finland (a decrease of 59 kt in CO2 emission),
suggesting a need for further energy efficiency measures in that
country.

Countries with small absolute contractions in CO2 emission are
rather diverse in their decomposition patterns. The latter group
comprises Lithuania, Austria, Latvia, and Slovenia, which, indeed,
are mainly small emitters. Lithuania and Latvia experienced similar
reductions in CO2 emission caused by an energy intensity effect
(272 kt). However, carbon factor caused an increase of 47 kt in Lat-
via. In addition, an activity effect was more evident in the latter
country. Therefore, Latvia showed the total reduction of 90 kt,
whereas Lithuania had a 192 kt reduction. This finding implies that
fuel-mix could be adjusted in Latvia in order to curb the emissions.
Austria and Slovenia share the same pattern of decomposition,
namely a negative carbon factor effect, a positive energy intensity
effect, and a negative activity effect. Note that the activity effect is
0 2000 4000 6000 8000
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rather insignificant in Slovenia (a reduction in CO2 emission of
1 kt). Indeed, a steeper decrease in carbon factor and economic
activity yielded a higher decrease in Austria (191 kt) as compared
to Slovenia (38 kt).

The last group of countries comprises Slovakia, Estonia, Bulgar-
ia, and Sweden. These countries showed an increase in CO2 emis-
sion during 1995–2009 and shared the same pattern of
decomposition. Specifically, the increase in CO2 emission was
mainly driven by increasing carbon factor and economic activity
in those nations. Energy intensity effect was negative for all four
countries. Estonia is distinctive in that the carbon factor effect
(56 kt) was lower than the economic activity effect (68 kt). There-
fore, carbon factor remains the most important factor behind an
increase in energy-related CO2 emission from agricultural sectors
in this group of countries. Abatement of CO2 emission in these
countries, therefore, might involve relatively higher costs, as
changes in carbon factor are closely linked to fuel-mix. Indeed, a
systematic approach is needed to implement and streamline effec-
tive changes in fuel-mix.

In order to compare the extent of contribution of various factors
to CO2 emission from agricultural sectors across different coun-
tries, Fig. 5 presents a relative decomposition6. In this comparison,
the contributions of all the factors are normalised with respect to the
overall change in CO2 emission. Obviously, energy intensity effect
had the same relative importance across most of the analysed coun-
tries, with the exception of Romania, Finland, Austria, Slovenia, and
Estonia. Therefore, technological advancement aimed at reduction of
energy intensity is topical for those particular countries. The relative
contribution of carbon factor is much more varying across the
countries.

The results of IDA have also been aggregated across countries to
present the temporal developments in the driving forces of CO2

emission from agricultural sectors (Fig. 6). Noticeably, the period
before year 2002 shows a more or less constant impact of energy
intensity effect. Excluding the period 1995–1996, the energy inten-
sity effect pushed CO2 emission down by 1014–6993 kt every year.
6 Alternatively, one could employ multiplicative IDA to calculate relative contri
butions of the underlying factors.
-

The period 2002–2005 experienced diverse directions of the
impact of energy intensity. However, the increases in CO2 emission
due to energy intensity during 2002–2003 and 2004–2005 of 1317
and 3055 kt, respectively, are netted out by a reduction of 8133 kt
in 2004 (as well as subsequent developments). The period of 2005–
2008 experienced a decreasing absolute impact of energy intensity,
and a rebound was observed during 2008–2009.

The direction of the impact of carbon factor changes year to
year. However, the period of 1996–2001 generally marks an
increase in CO2 emission due to the dynamics in carbon factor. A
significant negative impact upon emission volume is observed only
for 1995–1996 and 2001–2002. The period 2002–2006 shows no
important contribution of carbon factor to CO2 emission. During
the rest of the research period, only 2007–2008 is associated with
a decisive effect of carbon factor, namely an increase in emission
by 1596 kt.

Turning to the impact of activity effect, the latter mostly con-
tributed to CO2 emission during 1995–2002. Afterwards, direction
of the effect varied, being positive during 2003–2004 and negative
throughout 2004–2008. Indeed, the latter trend can be attributed
to a reduction in output during a period of unfavourable climatic
conditions. Economic growth, however, gained momentum again
in 2007–2009, and the activity effect played an important role dur-
ing the last period examined, 2008–2009.

To sum up, CO2 emission from agricultural sectors went down
by some 14 thousand kt in the analysed countries during 1995–
2009. The major factor behind this change is intensity effect, which
rendered a reduction of 29 thousand kt. Carbon factor inflated CO2

emission by 4 thousand kt. A much higher impact was attributed to
activity effect, i.e., 11 thousand kt. Therefore, gains in energy effi-
ciency were the main factor contributing to the reduction in CO2

emission, whereas changes in fuel-mix exerted an opposite effect
of half the magnitude.

4.2. Environmental efficiency and shadow pricing

In previous sub-section we looked at the causes behind the
dynamics in CO2 emission from agricultural sectors. This sub-
section focuses on performance gaps as measured by an environ-
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Fig. 6. Decomposition of carbon emission for the whole sample, 1995–2009. Notes: DF, DI, and DQ stand for carbon factor, energy intensity, and activity effects, respectively.
The data cover the 18 countries as described in Section 3.3.
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mental efficiency model (see Section 3.2). These approaches com-
plement each other, as both of them take economic activity and
CO2 emission into account. However, the environmental efficiency
model also accounts for production factors other than energy. For
example, it would take into account countries with high energy
efficiency and/or low carbon factors that might not necessarily
maintain technical and, hence, environmental efficiency.

As the SBMmodel rests on a simultaneous consideration of both
input and output slacks, the resulting efficiency scores cannot be
interpreted straightforwardly. However, the higher values of effi-
ciency scores indicate lower slacks of inputs and/or outputs.
Indeed, it is possible to decompose the SBM efficiency scores
[12]; however, for the sake of brevity, we do not take this
approach.

Analysis of the weighted mean environmental efficiency scores
(Fig. 7) indicates an upward trend in environmental performance.
Note that the agricultural GVA is used as a weighting factor. Two
major falls in efficiency are observed for the year 2001 and the per-
iod 2005–2007. At the beginning of the research period, the mean
efficiency score was 0.47. It peaked in 2004 at 0.61, and, following
a decline, stood at 0.59 in 2009.

Another important aspect of the analysis is the convergence in
efficiency scores. The results indicate (Fig. 8) that the CV for envi-
ronmental efficiency scores experienced a downward trend during
1995–2009. This implies the analysed countries achieved a certain
y = 0.0066x + 0.4799 
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Fig. 7. Weighted mean environmental efficiency, 1995–2009. Note: Agricultural
GVA is used for weighting. SBM stands for Slack-based Model.
degree of convergence in terms of environmental performance.
However, this process was subdued after 2001. In any event, the
coefficient of variation went down from 0.56 in 1995 to 0.40 in
2009. Note that the bottom values, namely 0.37, were achieved
in 2001 and 2005. Therefore, the analysed countries managed to
converge in terms of environmental performance, as suggested
by efficiency measures, yet this process was subdued in 2003–
2009.

Table 2 presents mean efficiency scores for each country. The
highest scores are observed for Belgium, Slovenia, Romania, Aus-
tria, and France (efficiency scores for these countries fall in the
range of 0.78–0.66). Of the best performing countries, Austria
and Belgium both exhibited a decrease in efficiency during
1995–2009. As regards Belgium, these changes can (partially) be
attributed to poor energy and carbon productivity. For Austria,
an increase in energy intensity might have had a negative effect,
yet the magnitude of that change was not a decisive one (an
increase in CO2 emission of 70 kt during 1995–2009). Therefore,
technical inefficiency might be a more important source of envi-
ronmental inefficiency in this case. Looking at the least efficient
states, one can notice that an increase in efficiency is observed in
most cases during 1995–2009. However, the two lowest-ranking
countries – Czech Republic and Estonia – do not follow this trend.
In the latter two cases, mean efficiency was 0.26, thus indicating a
serious performance gap.
y = -0.0085x + 0.5169 
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Fig. 8. Variation in environmental efficiency across the analysed countries, 1995–
2009. Note: The data cover the 18 countries as described in Section 3.3.



Table 2
Mean environmental efficiency scores across countries, 1995–2009.

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 Mean Rank

Austria 1.00 0.75 0.77 0.85 0.89 0.70 0.60 0.54 0.51 0.59 0.56 0.56 0.61 0.74 0.65 0.69 4
Belgium 0.89 1.00 1.00 1.00 0.93 1.00 0.86 1.00 0.67 0.74 0.52 0.60 0.55 0.50 0.47 0.78 1
Bulgaria 0.40 0.37 0.63 0.62 0.65 0.53 0.57 0.60 0.58 0.79 0.57 0.61 0.40 0.53 0.50 0.56 7
Czech Republic 0.23 0.23 0.21 0.23 0.24 0.25 0.25 0.26 0.29 0.31 0.34 0.29 0.25 0.25 0.26 0.26 18
Germany 0.23 0.25 0.26 0.25 0.29 0.30 0.32 0.30 0.29 0.38 0.34 0.33 0.32 0.30 0.32 0.30 15
Denmark 0.29 0.31 0.31 0.32 0.32 0.35 0.37 0.35 0.37 0.38 0.33 0.30 0.29 0.31 0.46 0.34 13
Estonia 0.26 0.25 0.28 0.33 0.31 0.34 0.27 0.28 0.28 0.25 0.22 0.20 0.21 0.22 0.25 0.26 17
Finland 0.34 0.33 0.39 0.32 0.31 0.33 0.32 0.33 0.31 0.31 0.32 0.32 0.37 0.42 0.41 0.34 12
France 0.60 0.64 0.63 0.66 0.71 0.67 0.61 0.72 0.52 0.74 0.65 0.66 0.63 0.69 0.78 0.66 5
Hungary 0.18 0.19 0.20 0.20 0.21 0.21 0.26 0.23 0.25 0.41 0.42 0.39 0.31 0.50 0.48 0.30 16
Lithuania 0.31 0.36 0.40 0.37 0.34 0.38 0.37 0.38 0.38 0.38 0.37 0.31 0.35 0.37 0.41 0.37 11
Latvia 0.25 0.24 0.29 0.28 0.29 0.35 0.36 0.37 0.34 0.32 0.31 0.27 0.29 0.33 0.34 0.31 14
Netherlands 0.45 0.42 0.49 0.43 0.45 0.45 0.41 0.40 0.43 0.47 0.47 0.48 0.49 0.53 0.63 0.47 10
Poland 0.55 0.54 0.58 0.82 1.00 0.40 0.51 0.52 0.53 0.57 0.55 0.56 0.49 0.48 0.61 0.58 6
Romania 0.53 0.50 0.53 0.51 0.54 0.43 0.73 0.78 1.00 1.00 0.87 1.00 0.72 0.86 0.63 0.71 3
Slovakia 0.37 0.34 0.36 0.34 0.32 0.33 0.38 0.48 0.55 0.52 0.44 0.56 0.82 1.00 1.00 0.52 8
Slovenia 1.00 0.85 0.77 0.60 0.50 0.51 0.50 1.00 0.46 0.77 0.83 0.83 1.00 1.00 1.00 0.77 2
Sweden 0.42 0.41 0.43 0.40 0.41 0.41 0.43 0.44 0.47 0.55 0.50 0.64 0.69 0.65 0.71 0.50 9
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Following Eq. (10), shadow prices were derived for energy-
related CO2 emission from agricultural sectors. Fig. 9 presents the
weighted mean for the whole sample, with emission volumes used
for weighting. Corresponding to an increasing environmental effi-
ciency, the mean shadow price increased during 1995–2009. How-
ever, the upward trend for shadow prices is more evident than it
was for efficiency (Fig. 7). Decreases are observed for 2001–2003
and 2005–2006. An increase in mean shadow price indicates that
reduction in CO2 emission is in general becoming costlier given
the underlying productive technology. Therefore, further reduction
in CO2 emission in agricultural sectors requires reasonable targets
and allocation across countries. Still, Fig. 10 implies there has been
y = 0.0104x + 0.4405 
R² = 0.6063 
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Fig. 9. Weighted mean CO2 emission shadow price, 1995–2009. Notes: Carbon
emission is used as the weight factor. PPS stands for Purchasing Power Standards.
The data cover the 18 countries as described in Section 3.3.
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Fig. 10. Variation in shadow prices of CO2 emission across the analysed countries,
1995–2009. Note: The data cover the 18 countries as described in Section 3.3.
an increase in variation of shadow prices across the analysed coun-
tries. Specifically, a decrease was observed for 1995–2000, yet the
trend was reversed afterwards. Alongside several declines, CV for
shadow prices increased from its lowest point of 1.34 in 2001 up
to 1.90 in 2009. Note that the initial value (in year 1995) was
1.81. In general, an increase in agricultural GVA is related to an
increase in CV of carbon shadow prices, as is confirmed by a linear
trend for CV against GVA: CV ¼ 0:024GVA� 1:56, where GVA is
measured in billion PPS of 1995, R2 = 0.41. Therefore, increases in
economic activity seem to have had different impacts on shadow
carbon prices across European agricultural sectors.

A marginal abatement cost curve was established for the entire
sample (Fig. 11). Clearly, the curve features a downward trend,
which indicates that abatement costs rise along with emission
intensity. Emission intensity and abatement costs are exponen-
tially related. Fig. 11 suggests that the rate of increase in abate-
ment costs increases faster when emission intensity falls below
0.5 t/thousand PPS. An even more steep increase is observed for
intensities below 0.25 t/thousand PPS. These figures provide some
insights into possible reductions in emission intensity in European
agriculture. Specifically, aiming at reducing emissions below
0.25 t/thousand PPS would require significant support measures
and might not be reasonable in terms of food security goals.

Country-specific results regarding abatement costs are pre-
sented in Table 3. The latter table also presents the data on carbon
factors and energy intensities. These two relative indicators can
give some insights into the level of shadow prices. However, the
ratios of relative indicators and shadow prices between countries
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Fig. 11. Marginal abatement cost curve for the analysed countries, 1995–2009.
Notes: Carbon emission is used as the weight factor. PPS stands for Purchasing
Power Standards, t stands for tonnes. The data cover the 18 countries as described
in Section 3.3.



Table 3
Marginal abatement costs as represented by carbon emission shadow prices across European countries, 1995–2009.

Abatement costs Mean carbon factor, t/GJ Mean energy intensity, kJ/PPS

Mean (1000 PPS/t) Rank Coefficient of variation Rank

Austria 0.58 10 0.27 10 40.19 7.46
Belgium 0.15 18 0.38 8 75.61 14.17
Bulgaria 1.55 5 0.49 3 55.55 2.88
Czech Republic 0.59 9 0.18 14 94.81 6.23
Germany 0.78 7 0.22 12 52.12 8.75
Denmark 0.34 15 0.18 16 50.18 15.61
Estonia 1.09 6 0.46 4 41.19 8.07
Finland 0.42 13 0.18 15 55.76 12.04
France 0.42 12 0.08 18 73.35 5.81
Hungary 1.57 4 0.38 7 49.10 4.85
Lithuania 2.11 3 0.21 13 41.89 3.95
Latvia 0.51 11 0.14 17 60.05 11.14
Netherlands 0.24 16 0.23 11 43.63 26.15
Poland 0.23 17 0.32 9 70.25 11.79
Romania 9.96 1 0.60 1 17.10 2.01
Slovakia 8.39 2 0.39 6 11.74 4.10
Slovenia 0.67 8 0.53 2 48.25 5.88
Sweden 0.41 14 0.45 5 69.33 7.68
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are not of the same magnitude, as shadow prices rely on efficiency
measures and, thus, capture more information regarding trade-offs
in the production process.

Given both Fig. 10 and Table 3 confirm the differences existing
among countries in terms of carbon shadow prices, it might be
concluded that the costs associated with environmental pressures
are not internalised in agricultural sectors. Indeed, the agricultural
sector has not been included in such frameworks as the Emission
Trading Scheme in the EU.

Romania and Slovakia show the highest mean shadow prices of
9.96 and 8.39 thousand PPS/t, respectively. The third highest mean
price is observed for Lithuania, namely 2.1 thousand PPS/t. This
indicates an important gap between shadow prices for the
second- and third-highest positions. Such differences, indeed, are
not observed between other positions. The highest ranking coun-
tries feature rather low values of carbon factor and energy inten-
sity. Therefore, application of innovative energy technologies
should go beyond state-of-the-art there, which would require
tremendous investment. However, IDA showed that changes in
fuel-mix would contribute to reductions in CO2 emission in Roma-
nia and Slovakia.

The lowest carbon shadow prices are observed in France, Fin-
land, Sweden, Denmark, the Netherlands, Poland, and Belgium.
Specifically, the shadow prices range between 420 and 410 PPS/t
for France, Finland, and Sweden. The shadow price for Denmark
is 340 PPS/t, whereas the Netherlands and Poland share rather sim-
ilar values of 240 and 230 PPS/t, respectively. Finally, Belgium
shows the lowest price of 150 PPS/kt. These countries, therefore,
feature the highest potential for reduction in CO2 emission.

The results of the IDA might be helpful in identifying the
prospective development paths for curbing CO2 emission. Consid-
ering data in Table 3 and Fig. 5, one can conclude that France needs
improvements in fuel-mix in order to reduce the carbon factor
there. Focusing on Finland, Sweden, the Netherlands, and Belgium,
energy intensity might be the primary way for a reduction in CO2

emission. Even though Denmark has seen a decrease in both car-
bon factor and energy intensity, their values still remain relatively
high. Therefore, further implementation of sustainable energy
technologies is important in both areas.

5. Conclusions

Agricultural activities are rather important in terms of food
security. However, it is also important to balance food security
and climate change mitigation strategies. In this paper, we
attempted to look into energy-related CO2 emissions from agricul-
tural sectors of selected EU Member States. The analysis was based
on aggregate data from theWorld Input-Output Database. Method-
ologically, two main directions were taken for the research. Firstly,
Index Decomposition Analysis was facilitated by means of the
Shapley index. Secondly, the Slack-Based Model was applied to
gauge the environmental efficiency of European agricultural sec-
tors. Therefore, the combination of the two techniques allowed
us to gain deeper insights into the trends in CO2 emission and
the policy options to mitigate it.

The results indicate that absolute decoupling between eco-
nomic activity and energy use/CO2 emission was achieved for the
whole sample during 1995–2009. Energy intensity appeared to
be the main factor behind the decreasing energy-related CO2 emis-
sion. The downward trend in energy intensity can be explained by
technological innovations and transition in the post-communist
countries, where technological innovations were intertwisted with
economy-wide shifts in production and distribution. Carbon factor
fuelled growth in CO2 emission, yet the effect was not a decisive
one. The substitution of natural gas by other fuels was the main
factor inducing the increase in carbon factor.

The analysis of environmental efficiency suggested that the
weighted mean efficiency increased in general during the research
period. Furthermore, the coefficient of variation decreased, thus
implying a convergence among the analysed countries. The highest
efficiency scores were observed for Belgium, Slovenia, Romania,
Austria, and France, whereas Czech Republic and Estonia were
the lowest performing countries.

The Data Envelopment Analysis model allowed us to compute
shadow prices for CO2 emission. The general trend was that of an
increase in the shadow price, which indicates that more output
should be abandoned in order to facilitate a reduction of the same
magnitude in CO2 emission. Therefore, an increase in carbon pro-
ductivity over time can be assumed. However, a kind of disparity
was noticed among the countries with respect to shadow prices.
These findings imply that, even though opportunity costs for
reductions in CO2 emission have increased on average, there are
certain countries with relatively low carbon performance. There-
fore, there is a need to better coordinate the process of reduction
in CO2 emission among EU nations. The lowest carbon shadow
prices are observed in France, Finland, Sweden, Denmark, the
Netherlands, Poland, and Belgium. These countries, thus, feature
the highest potential for reduction in CO2 emission.
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As there are two main paths to curb CO2 (or, more generally,
GHG) emissions related to energy consumption in agriculture,
namely to increase energy efficiency and to increase the use of
renewable energy sources, the present study sheds some light on
the choice of such policies. It turns out, policies aimed at increasing
energy efficiency were the most effective in terms of CO2 emission
reduction in agriculture. On the other hand, the share of renew-
ables in final energy consumption in agriculture did not affect
the development of CO2 emission significantly. Therefore, greater
emphasis on energy efficiency policies is necessary in Europe to
achieve CO2 emission reduction targets. Furthermore, costs associ-
ated with energy efficiency improvements and the use of renew-
ables should be considered in order to mesh the goals of food
security with those of climate change mitigation. The use of
improved machinery and farming practices can reduce energy
intensity, whereas promotion of renewable energy production
would enable to dampen carbon intensity of energy. In case of
the EU, the Common Agricultural Policy (as implemented via rural
development programmes) could foresee measures aimed at
encouraging investments into energy-efficient machinery and
buildings. The extension and advisory services could be useful in
developing the human capital through systematic education on
energy-saving practices of farming. Regional differences should
also be taken into account. Precision farming, recycling of agricul-
tural residues, cooperation, and integrated decision making would
provide a sound basis for development of energy- and carbon-
efficient agriculture.

There are a number of avenues for further research in regards to
carbon efficiency and productivity in European agriculture. It is
possible to include more factors into the IDA model. This is espe-
cially relevant for the agricultural sector. For instance, the effects
of re-allocation of agricultural production across different coun-
tries can be taken into account. A comparison of different efficiency
measures might enable delivery of deeper insights into the envi-
ronmental performance of European agriculture. Therefore, appli-
cation of the framework of by-production would enrich the
analysis in the latter sense. Results of the study might also be fed
into models for a quantitative allocation of emission reduction.
The main factors of environmental performance could be analysed
by applying regression techniques. Furthermore, marginal abate-
ment cost curves could also be adjusted to contextual variables.
Besides carbon efficiency, carbon productivity could also be anal-
ysed based on different efficiency measures. It is also important
to isolate structural inefficiency. Finally, the changes in shadow
prices can be decomposed in terms of different factors.
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