













2.6. Statistical analysis

All the results were subjected to ANOVA and the means were compared according to Student-Newman-Keuls (SNK) Multiple range test (P)0.05). When appropriate, linear regressions were analyzed for significance at p<0.05.



grown in the field. Bars represent the LSD for each calculated LTU.



![](_page_4_Figure_1.jpeg)

![](_page_4_Figure_3.jpeg)

![](_page_5_Figure_1.jpeg)

![](_page_5_Figure_2.jpeg)

## Completely redundant

| Source                             | d.f. | Barley yield |        | Mite density |        | Weed density |        |
|------------------------------------|------|--------------|--------|--------------|--------|--------------|--------|
|                                    |      | F            | P      | F            | P      | F            | Р      |
| Replicates                         | 3    | 5.48         | 0.037  | 7.49         | 0.019  | 2.81         | 0.130  |
| Input level (I)                    | 2    | 0.82         | >0.300 | 1.04         | >0.300 | 0.22         | >0.30  |
| Error A 6<br>Diversity level (D) 2 |      | -            | -      | -            | -      | -            | -      |
|                                    |      | 0.50         | >0.300 | 0.91         | >0.300 | 0.52         | >0.300 |
| I × D interaction                  | 4    | 0.22         | >0.300 | 0.90         | >0.300 | 4.68         | 0.00   |
| Error B                            | 18   | -            | -      | -            | -      | -            | -      |
| Cropping phase (P)                 | 5    | 0.17         | >0.300 | 2.08         | 0.071  | 0.21         | >0.300 |
| I × P interaction                  | 10   | 0.52         | >0.300 | 1.76         | 0.074  | 0.47         | >0.300 |
| 0 × P interaction 10               |      | 1.21         | 0.288  | 1.39         | 0.192  | 0.13         | >0.300 |
| I × D × P interaction 20           |      | 0.86         | >0.300 | 1.09         | >0.300 | 0.42         | >0.30  |
| Error C                            | 135  | -            | -      | -            | -      | -            | -      |
| Coefficient of variation 117       |      | 7 65.        |        | 3            |        | 59.9         |        |

Analysis of variance of 1994 barley yield, spring 1995 mite density and pretreatment weed densities based on experimental design to be used in the subsequent alternative cropping study.

|               | Eff     | ect of do<br>ar<br>Intera | ses on s<br>lova<br>actions | exes |           |          |     |
|---------------|---------|---------------------------|-----------------------------|------|-----------|----------|-----|
| Analysis of V | ariance | Table                     | Respon                      | se:  |           |          |     |
| AlkalinePhosp | hate Df | Sum Sc                    | q Mean                      | Sq I | F value 1 | Pr(>F)   |     |
| Dose          | 1       | 6241                      | 6241                        |      | 15.4289   | 0.002006 | * * |
| Sex           | 1 1     | 2401                      | 2401                        |      | 5.9357    | 0.031367 | *   |
| Dose:Sex      | 1 :     | 2044                      | 2045                        |      | 0.5538    | 1.23e-05 | *** |
| Residuals     | 12      | 4854                      | 405                         |      |           |          |     |
|               |         | Mea                       | ins                         |      |           |          |     |
|               | Dose    | e Fema                    | le Mal                      | е    |           |          |     |
|               | 8       | 133                       | 8.5 18                      | 0.5  |           |          |     |
|               | 25      | 165                       | 5 6                         | 9.5  |           |          |     |

![](_page_7_Figure_1.jpeg)

![](_page_7_Figure_2.jpeg)

![](_page_7_Figure_3.jpeg)

![](_page_8_Figure_1.jpeg)

| Table 2 I                   | Effects of ging                       | er aqueous extrac                   | ets on activitie              | s of antioxidant                       | enzymes in leaves of                                                               |
|-----------------------------|---------------------------------------|-------------------------------------|-------------------------------|----------------------------------------|------------------------------------------------------------------------------------|
| ginger se<br>Ginger<br>part | Concentration<br>(g L <sup>-1</sup> ) | POD<br>(U mg <sup>-1</sup> protein) | SOD<br>(U g <sup>-1</sup> FW) | APX<br>(U mg <sup>-1</sup><br>protein) | $\begin{array}{c} CAT \\ (\mu mol \ H_2O_2 \ g^{-1} \ FW \\ min^{-1} \end{array} $ |
|                             | 0                                     | 1097 ± 39a                          | 168 ± 11b                     | 11.8 ± 2.1ab                           | 5.46 ± 0.11ab                                                                      |
|                             | 10                                    | $1117 \pm 76a$                      | $189 \pm 25ab$                | $12.1 \pm 0.8a$                        | $6.50 \pm 0.50a$                                                                   |
| Rhizome                     | 20                                    | $1185 \pm 102a$                     | $230 \pm 14a$                 | 9.6 ± 0.7abc                           | $4.54 \pm 0.25b$                                                                   |
|                             | 40                                    | $861 \pm 34b$                       | $171 \pm 7b$                  | $8.0 \pm 1.2bc$                        | $3.00 \pm 0.52c$                                                                   |
|                             | 80                                    | $732 \pm 75b$                       | $139 \pm 19b$                 | $7.4 \pm 0.3c$                         | $1.54 \pm 0.21d$                                                                   |
|                             | 0                                     | 1097 ± 39a                          | 168 ± 11a                     | 11.8 ± 2.1a                            | $5.46 \pm 0.11a$                                                                   |
|                             | 10                                    | $997 \pm 65a$                       | $147 \pm 9a$                  | $6.2 \pm 0.7b$                         | $3.29 \pm 0.15ab$                                                                  |
| Stem                        | 20                                    | 669 ± 23b                           | $106 \pm 6b$                  | $5.3 \pm 0.4$ bc                       | $2.42 \pm 0.22b$                                                                   |
|                             | 40                                    | $549 \pm 34bc$                      | $82 \pm 9bc$                  | $4.9 \pm 0.4$ bc                       | $1.83 \pm 0.40c$                                                                   |
|                             | 80                                    | $434 \pm 46c$                       | $60 \pm 6c$                   | $2.4 \pm 0.5c$                         | $1.38 \pm 0.11d$                                                                   |
|                             | 0                                     | $1097 \pm 39a$                      | $168 \pm 11a$                 | $11.8 \pm 2.1a$                        | $5.46 \pm 0.11a$                                                                   |
|                             | 10                                    | $1020 \pm 32a$                      | $166 \pm 8a$                  | $9.6 \pm 0.7 ab$                       | $4.21 \pm 0.15b$                                                                   |
| Leaf                        | 20                                    | $761 \pm 35b$                       | $123 \pm 15b$                 | $7.8 \pm 0.4bc$                        | $2.67 \pm 0.22c$                                                                   |
|                             | 40                                    | $582 \pm 10c$                       | $84 \pm 1c$                   | $5.2 \pm 0.2$ cd                       | $1.96 \pm 0.15$ cd                                                                 |
|                             | 80                                    | 449 ± 58d                           | $66 \pm 10c$                  | $4.2 \pm 0.1d$                         | $1.45 \pm 0.11d$                                                                   |

![](_page_9_Figure_1.jpeg)

![](_page_9_Figure_3.jpeg)

![](_page_10_Figure_1.jpeg)

![](_page_10_Figure_2.jpeg)

![](_page_10_Figure_3.jpeg)

![](_page_11_Figure_1.jpeg)

## The standard errors are not from an ANOVA

Table 1 Effect of different dried leaf tissue concentrations of *A. artemisiifolia* on total germination (GT), shoot and root length of the weeds: A. artemisilfolia (AMBAR), D. sanguinalis (DIGSA), E. crus-galli (ECHCG), P. oleracea (POROL) and S. nigrum (SOLNI).

| 2                | Indicator | Control <sup>a</sup> | Dried leaf tissue amounts<br>(g Parker dish <sup>-1</sup> ) <sup>a</sup> |              |                           |  |  |
|------------------|-----------|----------------------|--------------------------------------------------------------------------|--------------|---------------------------|--|--|
| 25               | species   | - 12 - 12 - 12       | 1.0                                                                      | 2.0          | 3.0                       |  |  |
| GT               | AMBAR     | 50.0± 7.07a          | 40.0± 6.41a                                                              | 42.5± 6.29a  | 32.5± 2.50a               |  |  |
| <mark>(%)</mark> | DIGSA     | 48.8± 0.00a          | 42.5± 0.15a                                                              | 30.0± 0.37ab | 5.0± 1.34b                |  |  |
|                  | ECHCG     | 42.5± 0.00a          | 62.5± 0.13a                                                              | 45.0± 0.30a  | 50.0 <mark>±</mark> 0.42a |  |  |
|                  | POROL     | 55.0± 0.00a          | 60.0± 0.13a                                                              | 77.5± 0.23a  | 60.0± 0.39a               |  |  |
|                  | SOLNI     | 12.5± 0.00a          | 10.0± 0.32a                                                              | 30.0± 0.37b  | 45.0± 0.45b               |  |  |

![](_page_12_Figure_1.jpeg)

![](_page_12_Figure_3.jpeg)

![](_page_13_Figure_1.jpeg)

![](_page_13_Figure_3.jpeg)

## InsectSprays All combinations differences

| _     | _    | ~ |          |        |        |        |       |
|-------|------|---|----------|--------|--------|--------|-------|
| в – . | A == | 0 | 0.8333   | 1.6011 | 0.520  | 0.995  |       |
| С – 2 | A == | 0 | -12.4167 | 1.6011 | -7.755 | <0.001 | * * * |
| D - 2 | A == | 0 | -9.5833  | 1.6011 | -5.985 | <0.001 | * * * |
| Е — 2 | A == | 0 | -11.0000 | 1.6011 | -6.870 | <0.001 | * * * |
| F - 1 | A == | 0 | 2.1667   | 1.6011 | 1.353  | 0.754  |       |
| С – 1 | в == | 0 | -13.2500 | 1.6011 | -8.276 | <0.001 | * * * |
| D - 1 | в == | 0 | -10.4167 | 1.6011 | -6.506 | <0.001 | * * * |
| Е — 1 | в == | 0 | -11.8333 | 1.6011 | -7.391 | <0.001 | * * * |
| F - 1 | в == | 0 | 1.3333   | 1.6011 | 0.833  | 0.960  |       |
| D - 0 | C == | 0 | 2.8333   | 1.6011 | 1.770  | 0.492  |       |
| Е – ( | C == | 0 | 1.4167   | 1.6011 | 0.885  | 0.949  |       |
| F - 0 | C == | 0 | 14.5833  | 1.6011 | 9.108  | <0.001 | * * * |
| Е –   | D == | 0 | -1.4167  | 1.6011 | -0.885 | 0.949  |       |
| F - 1 | D == | 0 | 11.7500  | 1.6011 | 7.339  | <0.001 | * * * |
| F - 1 | Е == | 0 | 13.1667  | 1.6011 | 8.223  | <0.001 | * * * |
|       |      |   |          |        |        |        |       |
|       |      |   |          |        |        |        |       |

![](_page_14_Figure_4.jpeg)

![](_page_15_Figure_1.jpeg)

![](_page_15_Figure_2.jpeg)

![](_page_16_Figure_1.jpeg)

![](_page_16_Figure_2.jpeg)

![](_page_16_Figure_3.jpeg)

![](_page_17_Figure_1.jpeg)

![](_page_17_Figure_3.jpeg)

![](_page_18_Figure_1.jpeg)

![](_page_18_Figure_2.jpeg)

![](_page_18_Figure_3.jpeg)

![](_page_19_Figure_1.jpeg)

![](_page_19_Figure_3.jpeg)